Convenient synthesis of substituted cyclopentenones via [3 + 2] annulation of allylidenetriphenylphosphorane with 1,2-diacylethylenes: application to synthesis of (\pm)-methyl dehydrojasmonate

Yuichiro Himeda, ${ }^{a}$ Yasuhiro Tanaka,,${ }_{+}{ }^{b}$ Ikuo Ueda ${ }^{b}$ and Minoru Hatanaka ${ }^{*}, c$
${ }^{a}$ Department of Molecular Engineering, National Institute of Materials and Chemical Research, Higashi 1, Tsukuba, Ibaraki 305, Japan
${ }^{b}$ The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567, Japan
${ }^{c}$ Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Fukui University, Fukui 910-8507, Japan

Abstract

(3-Alkoxycarbonyl-2-ethoxyprop-2-enylidene)triphenylphosphoranes 1 and 2 undergo [3 + 2] annulation with 1,2-diacylethylenes 3 to give 2-ethoxycyclopentadienes 6 as mixtures of the 1,3- and 1,4-diene. The mixtures are conveniently converted upon mild acid treatment into cyclopentenones 7 in a single form. Annulation of phosphorane 1 with acylmethylenemalonates 10 affords cyclopenta-1,3-dienes 11 in a highly regioselective fashion, which are readily converted into substituted cyclopentenones 12 in excellent yields. Phosphorane 1 also undergoes annulation with 1,2-acylacetylene 14 to give the fulvene 15, which is transformed into the exomethylenecyclopentenone 16. Furthermore, an application of the annulation to the synthesis of (\pm)-methyl dehydrojasmonate is described.

Introduction

Allylidenetriphenylphosphorane acts as a bidental 1,3construction unit in annulations, including cyclopentadiene formation with α-halogeno ketones ${ }^{1}$ and cyclohexadiene formation with α, β-unsaturated aldehydes. ${ }^{2,3}$ The phosphorane has two nucleophilic centres at the α - and γ-position of the electrondelocalized structure. The first nucleophilic attack occurs predominantly at the γ-position as demonstrated by the above annulations. ${ }^{4}$ Taking advantage of the nature of the phosphorane, we have described recently an additional $[3+2]$ annulation between the phosphorane and 1,2-diacylethylenes which generates substituted cyclopentadienes without accompanying formation of other possible cyclohexadienes. ${ }^{5}$ In order to extend the scope and the utility of this annulation, we investigated synthesis of substituted cyclopentenones with [2-ethoxy-3-(ethoxy-carbonyl)prop-2-enylidene]triphenylphosphorane $\mathbf{1}$ in a similar manner to the previously reported synthesis of cyclopentenones from ethoxyphosphorane 1 and α-halogeno ketones, ${ }^{1 b}$ because construction of cyclopentenones has been intensively studied in recent years. ${ }^{6}$ However, the annulation of the allylidenephosphorane with 1,2-diacylethylenes generally affords mixtures of the double-bond isomers involving cyclopenta-1,3- and -1,4-dienes and hence the difficulty of the present work would be associated with conversion of the resulting isomeric mixtures of 2-ethoxycyclopentadienes into cyclopentenones in a single form. We found that the conversion was accomplished through an equilibrium process by treatment with weak acid. In addition, excellent results are obtained by use of acylmethylenemalonates as substrates which lead to exclusive formation of the 2-ethoxycyclopenta-1,3-dienes and then the corresponding cyclopentenones after mild acid treatment. We report here details of an efficient access to substituted cyclopentenones from 2-ethoxyphosphorane and 1,2-diacylethylenes including acylmethylenemalonates and, furthermore, details of an application of the method to the synthesis of (\pm)-methyl dehydrojasmonate 20. ${ }^{7}$

[^0]Table 1 Ethoxycyclopentadienes 6 and cyclopentenones 7 from allylidenephosphorane and 1,2-diacylethylenes

Entry	Ylide	Substrate	Cyclopentadiene $(\%)^{a}$	Cyclopentenone $(\%)^{b}$
1	$\mathbf{1}$	$\mathbf{3 a}$	$\mathbf{6 a}(94)$	$\mathbf{7 a}(60)$
2	$\mathbf{1}$	$\mathbf{3 b}$	$\mathbf{6 b}(51)$	$\mathbf{7 b}(60)$
3	$\mathbf{1}$	3c	$\mathbf{6 c}(80)$	$\mathbf{7 c}(73)$
4	$\mathbf{1}$	3d	$\mathbf{6 d}(58)$	$\mathbf{7 d}(56)$
5	$\mathbf{2}$	3c	$\mathbf{6 e}(83)$	$\mathbf{7 e}(78)$

${ }^{a}$ The cyclopentadienes were obtained as mixtures of the $1,3-$ and $1,4-$ diene. Total yields are those obtained after flash chromatography. ${ }^{b}$ Yields are those obtained after flash chromatography.

Results and discussion

When the phosphorane 1 was allowed to react with 1,2dibenzoylethylene $\mathbf{3 a}$ in THF at $-30^{\circ} \mathrm{C}$ to room temperature, [3+2] annulation occurred smoothly and the cyclopentadiene 6a was obtained in 94\% yield without accompanying formation of $[3+3]$ annulation product $\mathbf{5 a}$ (Scheme 1). The cyclopentadiene 6a was an inseparable mixture of the 1,3- and 1,4-dienes in a $1: 1$ ratio, as indicated from the ${ }^{1} \mathrm{H}$ NMR spectrum. The mixture may arise from the initially formed 1,3 -diene through an equilibrium process under the weakly basic reaction conditions as described previously. ${ }^{1 b}$ Phosphorane 1 underwent $[3+2]$ annulation with various other diacylethylenes 3 to afford the corresponding cyclopentadienes $\mathbf{6}$ as mixtures of the $1,3-$ and 1,4 -dienes and the results are illustrated in Table 1. Diacetylethylene 3b gave compound $\mathbf{6 b}$ in 51% yield, and diethyl dithiofumarate $\mathbf{3 c}$ gave compound $\mathbf{6 c}$ in 80% yield, each as a $1: 1$ isomeric mixture. When the unsymmetrical ethylene S ethyl 4-oxopent-2-enethioate 3d was allowed to react with the phosphorane $\mathbf{1}$ in a similar manner, compound $\mathbf{6 d}$ was obtained in 58% yield as a 1:2 mixture of the 1,3- and 1,4-diene and no other regioisomers were detected. This indicates that the Michael addition occurs at the 3-position of substrate 3d in a highly regioselective fashion and successive Wittig reaction leads to product 6d. Phosphorane tert-butyl ester 2 also underwent annulation with thioester $\mathbf{3 c}$, to afford compound $\mathbf{6 e}$ as

Scheme 1 (see Table 1) Reagents and conditions: i, THF, $-30^{\circ} \mathrm{C}$ to room temp., 2 days
a $1: 1$ mixture of the 1,3 - and 1,4 -diene in 83% yield. Thus, annulations with 1,2 -diacylethylenes gave mixtures of the cyclopenta-1,3- and -1,4-dienes in all cases.

Problems were encountered during the attempted conversion of these cyclopentadienes into cyclopentenones. As anticipated, hydrolysis of the cyclopentadiene $\mathbf{6 a}$ in the form of a $1: 1$ mixture of 1,3 - and 1,4 -diene with aq. $2 \mathrm{~m} \mathrm{HCl}-\mathrm{CHCl}_{3}$ led to the formation of a $1: 1$ mixture of the corresponding 2-oxocyclo-pent-3-enecarboxylate 7a and 5-oxocyclopent-1-enecarboxylate 8a. Therefore, hydrolysis of the 1,4-diene isomer of compound $\mathbf{6 e}$, which was isolated in a pure form by crystallization, was examined under various conditions and it was eventually found that the cyclopenta-1,4-diene could be converted into the cyclopentenone 7 e in 78% yield when treated with aq. AcOH in THF at room temperature for 2 days (Scheme 2). On the other hand, hydrolysis of the cyclopenta-1,4-diene with aq. $2 \mathrm{~m} \mathrm{HCl}-$ CHCl_{3} gave the alternative cyclopentenone 8e in 97% yield. Apparently, the cyclopenta-1,4-diene must be in equilibrium with the 1,3 -isomer in the weak acidic medium and the latter is slowly hydrolyzed to give the cyclopentenone 7e predominantly. When the cyclopentadiene $\mathbf{6 e}$ in the form of a $1: 1$ mixture of the 1,3 - and 1,4 -isomer was subjected to hydrolysis under the same conditions, the cyclopentenone 7 e was obtained in 78% yield as the sole product. In this way, the cyclopentadienes 6a-d in the form of isomeric mixtures could be converted into the corresponding cyclopentenones $7 \mathbf{a}-\mathbf{d}$ (Scheme 3) and the results are listed in Table 1. Thus, the two-step sequence for the preparation of cyclopentenones 7 from the phosphorane and 1,2diacylethylenes was accomplished.

In a search for suitable substrates, we found that acylmethylenemalonates $\mathbf{1 0}$ give excellent results. The acylmethylene-

8e

7e
Scheme 2 Reagents and conditions: i, aq. $2 \mathrm{~m} \mathrm{HCl}, \mathrm{CHCl}_{3}$, room temp., 12 h; ii, aq. AcOH, THF, room temp., 2 days

Scheme 3 (see Table 1) Reagents and conditions: i, aq. AcOH, THF, room temp., 2 days

Scheme 4 Reagents and conditions: i, diethyl oxomalonate, CHCl_{3}, room temp., 48 h ; ii, 1, THF, $-30^{\circ} \mathrm{C}$ to room temp., 2 days; iii, aq. 2 m $\mathrm{HCl}, \mathrm{CHCl}_{3}$, room temp., 12 h

Table 2 2-Ethoxycyclopenta-1,3-dienes 11 and cyclopentenones $\mathbf{1 2}$ from allylidenephosphorane $\mathbf{1}$ and acylmethylenemalonate 10

Entry	Substrate	Cyclopentadiene (\%) a	Cyclopentenone (\%) a
1	$\mathbf{1 0 a}$	11a (94)	12a (90)
2	$\mathbf{1 0 b}$	$\mathbf{1 1 b}(87)$	$\mathbf{1 2 b}(94)$
3	$\mathbf{1 0 c}$	$\mathbf{1 1 c}(81)$	$\mathbf{1 2 c}(95)$

${ }^{a}$ Yields are those obtained after flash chromatography.
malonates 10a-d were readily prepared by Wittig reaction of the corresponding phosphoranes $9 \mathbf{9}-\mathbf{d}$ with diethyl oxomalonate. When phosphorane 1 was allowed to react with diethyl 2-oxopropylidenemalonate 10a, annulation proceeded nicely to give a 94% yield of 1,3-diene 11a exclusively (Scheme 4, Table 2). In contrast to the annulation with 1,2 -diacyl-
ethylenes $\mathbf{3}$, no formation of the corresponding 1,4-diene was observed. In fact, 1,3-diene 11a did not undergo base-induced isomerization to the 1,4 -diene under the reaction conditions. The reason for this may be that formation of the cyclopentadienyl anion is prevented because of preferential anion formation at the neighbouring malonate moiety. Treatment of 1,3 -diene 11a with aq. $2 \mathrm{~m} \mathrm{HCl}-\mathrm{CHCl}_{3}$ furnished the cyclopentenone 12a in 90% yield. Ethylthiocarbonyl derivative 10b also underwent annulation, to give the 1,3 -diene 11b in 87% yield as a single product. Similarly, the substrate 10c, having a longer substituent, smoothly gave the cyclopentadiene 11c in 81% yield. These cyclopentadienes 11b and 11c could be converted in a similar manner into cyclopentenones 12b and 12c in 94 and 95% yield, respectively. Thus, the annulation of phosphorane $\mathbf{1}$ with acylmethylenemalonates $\mathbf{1 0}$ provides an excellent route to substituted cyclopentenones in a regioselective fashion. However, when substrate $\mathbf{1 0 d}$ was subjected to annulation with phosphorane $\mathbf{1}$ in an attempt to prepare an optically active cyclopentadiene, the fulvene $\mathbf{1 3}$ was obtained in 90% yield as the sole product \ddagger and the expected cyclopentadiene 11d was not detected (Scheme 5). Compound $\mathbf{1 3}$ may come from compound

Scheme 5 Reagents and conditions: i, THF, $-30^{\circ} \mathrm{C}$ to room temp., 2 days

11d or its 1,4-diene isomer as an intermediate via elimination of acetic acid.

Another fulvene could be prepared directly by annulation with a 1,2 -diacylacetylene. ${ }^{7 b}$ When phosphorane $\mathbf{1}$ was allowed to react with dibenzoylacetylene 14 in THF at $-20^{\circ} \mathrm{C}$ to room temperature for 48 h , the fulvene $\mathbf{1 5}$ was obtained in 92% yield as a single, Z-isomer (Scheme 6). The Z-orientation of the benzoyl group was estimated on the basis of the chemical shift ($\delta 6.76$) of the exocyclic vinyl proton in comparison with those of analogous fulvene derivatives prepared previously. ${ }^{7 b}$ Treatment of the fulvene $\mathbf{1 5}$ with aq. $2 \mathrm{~m} \mathrm{HCl}-\mathrm{CHCl}_{3}$ gave the cyclopentenone $\mathbf{1 6}$ in 97% yield, providing access to exomethylene cyclopentenones.

An application of the annulation to the synthesis of (\pm)methyl dehydrojasmonate 20^{8} was next examined starting from the 3-(ethylthio)cyclopent-2-enone 7e (Scheme 7). Treatment of compound $7 \mathbf{e}$ with NaOH in methanol at $0^{\circ} \mathrm{C}$ gave methyl ester 17 in 74% yield. Alkylation of β-keto ester 17 with 1 -bromo-pent-2-yne proceeded smoothly to give compound $\mathbf{1 8}$ in 94% yield. Decarboxylation of compound $\mathbf{1 8}$ with TFA followed by partial hydrogenation afforded cis olefin 19 in 90% yield.
\ddagger The geometry of the exocyclic double bond of the fulvene $\mathbf{1 3}$ was confirmed by the observation of cross-peaks between the allylic methyl protons and the C-4 vinyl proton and between the exocyclic vinyl proton and the C-2 methine proton in the NOESY spectra.

Scheme 6 Reagents and conditions: i, THF, $-30^{\circ} \mathrm{C}$ to room temp., 2 days; ii, aq. 2 м $\mathrm{HCl}, \mathrm{CHCl}_{3}$, room temp., 12 h

Scheme 7 Synthesis of (\pm)-methyl dehydrojasmonate. Reagents and conditions: i, $\mathrm{NaOH}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, NaHDMS, 1-bromopent-2yne, THF, 0 to $60^{\circ} \mathrm{C}$; iii, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (TFA), anisole; iv, $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$, EtOH ; v, $\mathrm{NiCl}_{2}, \mathrm{NaBH}_{4}$, aq. EtOH.

Finally, desulfurization of compound 19 was achieved with nickel borate to furnish (\pm)-methyl dehydrojasmonate 20 in 47% yield, with 32% recovery of unchanged starting material 19 (69% conversion).

Conclusions

We have demonstrated that the annulation of [2-ethoxy-3-(ethoxycarbonyl)prop-2-enylidene]triphenylphosphorane with diacylethylenes provides a convenient route to substituted cyclopentenones. In particular, acylmethylenemalonates may be used as suitable substrates, which lead to high-yielding preparations of cyclopenta-1,3-dienes in most cases and then cyclopentenones after subsequent hydrolysis in a regioselective fashion. In addition, annulation of the phosphorane with 1,2diacylacetylene provides access to an alternative type of cyclopentenone.

Experimental

All mps were measured on a Mettler FP62 apparatus and are uncorrected. UV spectra were recorded on a JASCO V-550 spectrometer. IR spectra were recorded on a JASCO FT/ IR-5300 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured at 300 MHz in CDCl_{3} on a Varian Gemini 300 BB spectrometer, using SiMe_{4} as the internal standard. J-Values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz on the same spectrometer, and solvent peak ($\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} 77.0$) was used for the internal standard. Mass spectra were recorded on a Hitachi M-80B spectrometer. Optical rotations were measured with a JASCO DIP-1000 polarimeter, with $[a]_{\mathrm{D}}$-values given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{-1} \mathrm{~g}^{-1}$. Flash chromatography was performed on Wakogel C-300. Extracts were dried over MgSO_{4} and evaporated under reduced pressure. THF was distilled from sodium benzophenone ketyl. Petroleum spirit refers to the fraction with distillation range $60-70^{\circ} \mathrm{C}$.

Ethyl 5-(benzoylmethyl)-2-ethoxy-4-phenylcyclopenta-1,3- and -1,4-dienecarboxylate 6 a

A solution of 1,2-dibenzoylethylene 3a ($260 \mathrm{mg}, 1.1 \mathrm{mmol}$) in THF ($2 \mathrm{~cm}^{3}$) was added to a stirred solution of phosphorane $\mathbf{1}$ $(413 \mathrm{mg}, 1.0 \mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$ at $-30^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred at room temperature for 48 h , and was then evaporated under reduced pressure. The residue was purified by flash chromatography [hexane-ethyl acetate (5:1)] to give the cyclopentadiene $\mathbf{6 a}$ ($353 \mathrm{mg}, 94 \%$) as an oil (Found: $\mathrm{M}^{+}, 376.1667 . \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $M, 376.1673$); $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 1690,1611 and $1576 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.03\left(2 \times \frac{1}{2} \mathrm{H}\right.$, br d, $J 8.5, \mathrm{COPh}), 7.88\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 8.5, \mathrm{COPh}\right), 7.57-$ $7.19(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.81\left(1 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, 3-\mathrm{H}\right), 4.69\left(1 \times \frac{1}{2} \mathrm{H}, \mathrm{dd}\right.$, $J 6$ and $3.5,5-\mathrm{H}), 4.35\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.36-3.93(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.60\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.45\left(1 \times \frac{1}{2} \mathrm{H}, \mathrm{dd}\right.$, $J 16.5$ and $\left.6, \mathrm{COCH}_{2}\right), 3.12\left(1 \times \frac{1}{2} \mathrm{H}\right.$, dd, $J 16.5$ and 3.5 , $\left.\mathrm{COCH}_{2}\right), 1.47\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.05\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.03\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 198.0, 197.9, 173.2, 167.8, 163.8, 158.8, 137.2, 137.1, 136.3, 133.6, 133.4, 132.9, 129.6, 128.9, 128.8, 128.5, $128.5,128.3,128.2,128.1,128.1,127.9,127.0,126.6,119.6$, $110.2,67.1,59.4,59.2,43.7,40.7,38.9,38.6,15.2,15.1,14.2$ and 14.1.

Ethyl 2-ethoxy-4-methyl-5-(2-oxopropyl)cyclopenta-1,3- and -1,4-dienecarboxylate 6b

In the same manner as described for the preparation of compound $\mathbf{6 a}$, phosphorane $\mathbf{1}(412 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with hex-3-ene-2,5-dione 3b ($121 \mathrm{mg}, 1.1 \mathrm{mmol}$) to give the cyclopentadiene $\mathbf{6 b}(128 \mathrm{mg}, 51 \%)$ as an oil, $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 6.20\left(1 \times \frac{1}{2} \mathrm{H}\right.$, br s, $\left.3-\mathrm{H}\right), 4.30-4.00\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.66\left(1 \times \frac{1}{2} \mathrm{H}\right.$, ddd, $J 7.5,4$ and $\left.1,5-\mathrm{H}\right), 3.59\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $3.12\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.02\left(1 \times \frac{1}{2} \mathrm{H}, \mathrm{dd}, J 16.5\right.$ and $\left.4, \mathrm{COCH}_{2}\right)$, $2.72\left(1 \times \frac{1}{2} \mathrm{H}, \mathrm{dd}, J 16.5\right.$ and $\left.7.5, \mathrm{COCH}_{2}\right), 2.18\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{s}\right.$, $\left.\mathrm{COCH}_{3}\right), 2.15\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.99\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{d}, J 1.5\right.$, $4-\mathrm{Me}), 1.85\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}\right)$ and $1.40-1.10^{2}(6 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). This compound was unstable and was used immediately in the next step.

Ethyl 2-ethoxy-4-ethylthio-5-(ethylthiocarbonylmethyl)cyclo-penta-1,3- and -1,4-dienecarboxylate 6 c

In the same manner as described for the preparation of compound 6 a, phosphorane $\mathbf{1}(412 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with diethyl dithiofumarate 3 c ($224 \mathrm{mg}, 1.1 \mathrm{mmol}$) to give the cyclopentadiene 6c ($196 \mathrm{mg}, 80 \%$) as an oil (Found: M^{+}, 344.1118. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $M, 344.1115$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1694, 1597 and $1553 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.08\left(1 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, 3-\right.$ H), 4.25-4.09 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.02\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $3.79\left(1 \times \frac{1}{2} \mathrm{H}\right.$, dd, $J 7.5$ and $\left.4,5-\mathrm{H}\right), 3.35\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $3.17\left(1 \times \frac{1}{2} \mathrm{H}\right.$, dd, J 15.5 and 4 , one of $\left.\mathrm{COCH}_{2}\right), 2.99(1 \times$ $\frac{1}{2} \mathrm{H}$, dd, $\stackrel{2}{J} 15.5$ and 7.5, one of $\left.\mathrm{COCH}_{2}\right), 2.93-2.80\left(6 \times \frac{1}{2} \mathrm{H}\right.$,
$\left.\mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.65\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.46(3 \times$ $\left.\frac{1}{2} \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.41\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, ${ }_{1}^{2} .36\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)^{2}, 1.29\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.28\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.23\left(3 \times \frac{1}{2} \mathrm{H}\right.$, $\left.\mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$ and $1.21\left(6 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{C}_{3}\right)_{3}$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 196.9,196.6,173.4,168.0,163.1,158.8$, 141.7, 121.5, 115.7, 110.1, 106.0, 102.9, 67.3, 67.0, 59.7, 59.0, 47.6, 44.8, 43.4, 42.1, 29.4, 26.8, 23.4, 23.2, 15.2, 15.1, 14.9, $14.6,14.5,14.2,14.1$ and 13.2.
The pure 1,4 -isomer was isolated by repeated flash chromatography as an oil (Found: $\mathrm{M}^{+}, 344.1070$); $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 1700,1604 and $1560 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.20(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.13\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $\left.3.35(2 \mathrm{H}, \mathrm{s}, \mathrm{CH})_{2}\right), 2.84\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.65(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.46\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.28(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.21\left(6 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) $197.0,173.5,163.1,141.7,121.5,110.1,67.3,59.7,43.4$, 42.1, 29.4, 23.2, 15.2, 14.9, 14.7 and $14.2 ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 319$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 5200\right)$.

Ethyl 2-ethoxy-5-(ethylthiocarbonylmethyl)-4-methylcyclopenta-1,3- and -1,4-dienecarboxylate 6d
In the same manner as described for the preparation of analogue 6a phosphorane $\mathbf{1}(412 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with S-ethyl 4-oxopent-2-enethioate $\mathbf{3 d}(174 \mathrm{mg}, 1.1 \mathrm{mmol})$ to give the cyclopentadiene $\mathbf{6 d}\left(173 \mathrm{mg}, 58 \%\right.$) as an oil (Found: M^{+}, 298.1169. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$ requires M, 298.1238); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1692, 1624 and $1559 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.20\left(1 \times \frac{2}{3} \mathrm{H}\right.$, br s, $3-\mathrm{H}), 4.28-4.02\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.73\left(2 \times \frac{1}{3} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $3.57\left(1 \times \frac{2}{3} \mathrm{H}\right.$, dd, $J 4$ and $\left.7.5,5-\mathrm{H}\right), 3.18\left(1 \times \frac{3}{3} \mathrm{H}\right.$, dd, $J 4$ and $\left.15, \mathrm{COCH}_{2}\right), 3.12\left(2 \times \frac{1}{3} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.98\left(1 \times \frac{2}{3} \mathrm{H}\right.$, dd, $J 7.5$ and $\left.15, \mathrm{COCH}_{2}\right), 2.83\left(2 \times \frac{2}{3} \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$, $2.82\left(2 \times \frac{1}{3} \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)^{3}, 2.06\left(3 \times \frac{2}{3} \mathrm{H}, \mathrm{d}, J 1.5\right.$, $4-\mathrm{Me}), 1.90\left(3 \times \frac{1}{3} \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}\right), 1.43\left(3 \times \frac{1}{3} \mathrm{H}, \mathrm{t}, J^{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $1.40\left(3 \times \frac{2}{3} \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.31\left(3 \times \frac{2}{3} \mathrm{H}, \mathrm{t}, J 7\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.28\left(3 \times \frac{1}{3} \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.21(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 197.9,197.1,171.3$, 168.4, 163.7, 163.5, 157.9, 129.6, 126.8, 121.0, 106.2, 66.9, 66.8, 59.4, 59.0, 48.1, 42.9, 42.0, 41.7, 23.4, 23.1, 16.1, 15.1, 15.0, 14.6, 14.5, 14.2 and 13.0.

The pure 1,3 -isomer was isolated by repeated flash chromatography as an oil (Found: $\mathrm{M}^{+}, 298.1197$); $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 1692, 1671, 1624 and $1559 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ assignments were assisted by a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment) $6.20(1 \mathrm{H}$, br s, 3-H), 4.28-4.14 (4 H, m, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J 4$ and 7.5 , $5-\mathrm{H}), 3.18\left(1 \mathrm{H}, \mathrm{dd}, J 4\right.$ and $\left.15, \mathrm{COCH}_{2}\right), 2.98(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $\left.15, \mathrm{COCH}_{2}\right), 2.83\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH} \mathrm{CH}_{3}\right), 2.06(3 \mathrm{H}, \mathrm{d}$, $J 1.5,4-\mathrm{Me}), 1.40\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.31(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.21\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 197.0, 168.3, 163.4, 157.9, 121.0, 106.2, 66.8, 59.0, 48.1, $42.9,23.4,16.1,15.1,14.6$ and $14.5 ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 309.0$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 6600\right)$ and 233.0 (7300).

tert-Butyl 2-ethoxy-4-ethylthio-5-(ethylthiocarbonylmethyl)-cyclopenta-1,3- and -1,4-dienecarboxylate 6 e

In the same manner as described for the preparation of compound 6a, phosphorane $2(440 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with diethyl dithiofumarate $3 \mathrm{c}(224 \mathrm{mg}, 1.1 \mathrm{mmol})$ to give the cyclopentadiene 6e ($309 \mathrm{mg}, 83 \%$) as an oil (Found: M^{+}, 372.1385. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $M, 372.1428$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1676, 1591 and $1553 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.08\left(1 \times \frac{1}{2} \mathrm{H}, \mathrm{s}\right.$, $3-\mathrm{H}), 4.20\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.11\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.0^{2}\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.72\left(1 \times \frac{1}{2} \mathrm{H}^{2}\right.$, dd, J 3.5 and $7.5,5-\mathrm{H}), 3.32\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.18\left(1 \times \frac{1}{2} \mathrm{H}\right.$, dd, $J 3.5$ and 15.5, COCH_{2}), $2.96\left(1 \times \frac{1}{2} \mathrm{H}, \mathrm{dd}, J 7.5\right.$ and $\left.15.5, \mathrm{COCH}_{2}\right), 2.89$ $\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.86\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$, $2.83{ }^{2}\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.64\left(2 \times \frac{1}{2} \mathrm{H}, \mathrm{q}, J 7.5\right.$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right)^{2}, 1.51\left(9 \times \frac{1}{2} \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.49\left(9 \times \frac{1}{2} \mathrm{H}^{2}, \mathrm{~s}, \mathrm{Bu}^{t}\right), 1.45$ $\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.41\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $1.36^{2}\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.23\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7.5\right.$,
$\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.21\left(3 \times \frac{1}{2} \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$ and $1.21\left(3 \times \frac{1}{2} \mathrm{H}\right.$, $\left.\mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 196.9,196.4,172.6$, $167.4,162.4,162.3,157.8,141.5,121.2,115.7,111.3,107.2$, 80.2, 78.9, 66.9, 66.7, 47.6, 44.7, 43.1, 41.8, 29.1, 28.4, 28.1, $26.6,23.2,23.0,15.0,15.0,14.8,14.5$ and 13.1 .

Trituration of the resulting oil in ethyl acetate-hexane gave the pure 1,4 -isomer as needles, $\mathrm{mp} 89.0-90.0^{\circ} \mathrm{C}$ (from hexaneethyl acetate) (Found: H, 7.83; C, 58.04; S, 17.42. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\mathrm{H}, 7.58 ; \mathrm{C}, 58.03$; $\mathrm{S}, 17.21 \%)$; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1674$, 1589 and $1553 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.11(2 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.83(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.64\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.49(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Bu}^{t}\right), 1.45\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.21(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$ and $1.21\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$; CDCl_{3}) $196.9,172.6,162.4,141.5,121.2,111.3,80.2,66.9,43.1$, $41.8,29.1,28.1,23.0,15.0,14.8$ and $14.5 ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm}$ $312.5\left(8 / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3900\right)$ and 261.0 (11700).

Hydrolysis of compound 6a with aq. HCl

Aq. $\mathrm{HCl}\left(2 \mathrm{~m}, 20 \mathrm{~cm}^{3}\right)$ was layered on a solution of the cyclopentadiene $\mathbf{6 a}(53 \mathrm{mg}, 0.14 \mathrm{mmol})$ in chloroform $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was vigorously stirred for 12 h at room temperature. The aqueous layer was extracted with chloroform. The combined organic layers were washed with aq. NaHCO_{3}, dried and evaporated. The mixture containing a $1: 1$ mixture of cyclopentenones 7a and 8a was purified by flash chromatography [hexane-ethyl acetate (5:1)] within 10 min to give ethyl 2-(benzoylmethyl)-5-oxo-3-phenylcyclopent-3-enecarboxylate $7 \mathbf{a}$ ($20 \mathrm{mg}, 41 \%$) as prisms and ethyl 2-(benzoylmethyl)-5-oxo-3-phenylcyclopent-1-enecarboxylate $\mathbf{8 a}(5 \mathrm{mg}, 9 \%$) as an oil, which decomposed readily on silica gel.

Compound 7a: mp 97.6-99.1 ${ }^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: $\mathrm{H}, 5.76 ; \mathrm{C}, 75.72 \% ; \mathrm{M}^{+}$, 348.1337. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$ requires H, $5.79 ; \mathrm{C}, 75.84 \% ; M, 348.1360) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1732,1696$ and $1599 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ assignments were assisted by a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment) $7.87(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8.5, \mathrm{COPh}), 7.63-$ $7.35(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.47(1 \mathrm{H}, \mathrm{d}, J 1.5,4-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{br}$ d, $J 11$, $2-\mathrm{H}), 4.34-4.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.49(1 \mathrm{H}, \mathrm{dd}, J 18.5$ and $\left.2.5, \mathrm{COCH}_{2}\right), 3.27(1 \mathrm{H}, \mathrm{d}, J 2,1-\mathrm{H}), 3.03(1 \mathrm{H}, \mathrm{dd}, J 18.5$ and $\left.11, \mathrm{COCH}_{2}\right)$ and $1.36\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$; CDCl_{3}) 200.4, 197.1, 177.5, 168.5, 136.1, 133.6, 132.7, 131.4, 129.3, 128.7, 128.0, 127.4, 127.4, 61.8, 60.5, 42.5, 40.6 and 14.2; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 281.5\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 20000\right)$ and 246.5 (20 500).

Compound 8a: (Found: M^{+}, 348.1329. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4}$ requires M, $348.1360)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1746,1715,1628$ and $1599 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$; assignments were assisted by a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment) $7.86(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8.5, \mathrm{COPh}), 7.60-7.10(8 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{COCH}_{2}\right), 4.29\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 4.34-4.26(1 H, m, 3-H), $3.75\left(1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{COCH}_{2}\right), 3.12(1 \mathrm{H}$, dd, $J 19$ and 7.5, 4-CH2), $2.57\left(1 \mathrm{H}, \mathrm{dd}, J 19\right.$ and $\left.2.5,4-\mathrm{CH}_{2}\right)$ and $1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 202.3$, 194.1, 181.5, 162.8, 139.7, 136.2, 134.5, 133.7, 129.3, 128.7, $128.2,127.9,127.8,61.1,48.6,45.2,40.0$ and 14.1 ; $\lambda_{\max }-$ $(\mathrm{MeOH}) / \mathrm{nm} 404.0\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3500\right)$ and $246.0(11000)$.

Hydrolysis of compound 6a with aq. AcOH

A solution of the cyclopentadiene $\mathbf{6 a}(223 \mathrm{mg}, 0.59 \mathrm{mmol})$ in THF-AcOH-water $\left(5: 1: 5 ; 22 \mathrm{~cm}^{3}\right)$ was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 48 h . The mixture was concentrated under reduced pressure and the remaining solution was extracted with diethyl ether. The extract was washed with aq. NaHCO_{3}, dried, and evaporated. The residue was purified by flash chromatography [hexane-ethyl acetate (5:1)] to give the cyclopentenone $7 \mathbf{7 a}(124 \mathrm{mg}, 60 \%)$ as prisms.

Hydrolysis of 1,4-isomer of compound 6e with aq. $\mathbf{H C l}$

In the same manner as described for hydrolysis of compound $\mathbf{6 a}$ with aq. HCl , the 1,4 -isomer of compound $\mathbf{6 e}(100 \mathrm{mg}, 0.27$ mmol) was hydrolyzed to give tert-butyl 3-ethylthio-2-(ethyl-
thiocarbonylmethyl)-5-oxocyclopent-1-enecarboxylate 8e (90 $\mathrm{mg}, 97 \%$) as an oil (Found: $\mathrm{M}^{+}, 344.1138 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $M, 344.1115)$; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1744,1721$ and $1582 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$; assignments were assisted by an ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment) $4.31\left(1 \mathrm{H}, \mathrm{d}, J 15.5, \mathrm{COCH}_{2}\right), 4.11(1 \mathrm{H}, \mathrm{d}, J 15.5$, $\left.\mathrm{COCH}_{2}\right), 4.00(1 \mathrm{H}, \mathrm{dd}, J 2$ and $7,3-\mathrm{H}), 3.01(1 \mathrm{H}, \mathrm{dd}, J 7$ and 19.5, one of 4-H), $2.92\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.62(1 \mathrm{H}, \mathrm{dd}$, $J 2$ and 19.5, one of 4-H), 2.51-2.38 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{SCH} \mathrm{CH}_{3}\right), 1.54$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$ and $1.23(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 200.2,193.2,172.7$, $161.2,136.7,82.8,45.3,44.0,43.9,28.1,23.9,14.5$ and 14.4.

Ethyl 3-methyl-5-oxo-2-(2-oxopropyl)cyclopent-3-enecarboxylate 7b

In the same manner as described for hydrolysis of compound 6a with aq. AcOH , the cyclopentadiene $\mathbf{6 b}(128 \mathrm{mg}, 0.51 \mathrm{mmol})$ was hydrolyzed to give the cyclopentenone $\mathbf{7 b}(68 \mathrm{mg}, 60 \%)$ as an oil (Found: $\mathrm{M}^{+}, 224.1044 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $M, 224.1048$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1703$ and $1622 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ assignments were assisted by a ${ }^{1} \mathrm{H}^{1} \mathrm{H}$ COSY experiment) $5.92(1 \mathrm{H}$, br s, 4-H), $4.25\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.56(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10$, $2-\mathrm{H}), 3.03(1 \mathrm{H}, \mathrm{d}, J 2.5,1-\mathrm{H}), 2.97(1 \mathrm{H}, \mathrm{dd}, J 18$ and 4 , $\left.\mathrm{COCH}_{2}\right), 2.49\left(1 \mathrm{H}, \mathrm{dd}, J 18\right.$ and $\left.10, \mathrm{COCH}_{2}\right), 2.20(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{3}\right), 2.12(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me})$ and $1.32\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 205.4,200.8,179.5,168.7,129.6,61.6,59.8$, $45.3,43.8,30.0,17.3$ and $14.2 ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 231.0\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 10700$).

Ethyl 3-ethylthio-2-(ethylthiocarbonylmethyl)-5-oxocyclopent-3enecarboxylate 7c

In the same manner as described for hydrolysis of compound $\mathbf{6 a}$ with aq. AcOH , the cyclopentadiene $\mathbf{6 c}(600 \mathrm{mg}, 1.74 \mathrm{mmol})$ was hydrolyzed to give the cyclopentenone 7 c ($550 \mathrm{mg}, 73 \%$) as an oil (Found: H, 6.41; C, 53.18; S, 20.09\%; M ${ }^{+}$316.0787. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires H, 6.37; C, 53.14; S, 20.27\%; M, 316.0802); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1733,1690$ and $1542 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.87$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 4.23\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.86-3.79(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{d}, J 3,1-\mathrm{H}), 3.11(1 \mathrm{H}, \mathrm{dd}, J 16$ and 4 , $\left.\mathrm{COCH}_{2}\right), 2.95\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.90(2 \mathrm{H}, \mathrm{q}, J 7.5$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.68\left(1 \mathrm{H}, \mathrm{dd}, J 16\right.$ and $\left.10, \mathrm{COCH}_{2}\right), 1.40(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1,30\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.25(3 \mathrm{H}, \mathrm{t}$, J 7.5, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 196.2, 196.0, 181.9 , 168.3, 122.1, 61.7, 58.9, 46.8, 44.4, 27.4, 23.6, 14.6, 14.2 and 13.0; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 283.5\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 16300\right)$ and 236.5 (5700).

Ethyl 2-(ethylthiocarbonylmethyl)-3-methyl-5-oxocyclopent-3enecarboxylate 7d

In the same manner as described for hydrolysis of compound $\mathbf{6 a}$ with aq. AcOH , the cyclopentadiene $\mathbf{6 d}(171 \mathrm{mg}, 0.57 \mathrm{mmol})$ was hydrolyzed to give the cyclopentenone $7 \mathbf{d}(87 \mathrm{mg}, 56 \%)$ as an oil (Found: $\mathrm{M}^{+}, 270.0947 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$ requires $M, 270.0925$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1736,1705$ and $1622 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ assignments were assisted by a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment) 5.93 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 4.23\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.68-3.58(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{d}, J 3,1-\mathrm{H}), 3.02(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and 4.5 , $\left.\mathrm{COCH}_{2}\right), 2.90\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.63(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and 9.5, $\left.\mathrm{COCH}_{2}\right), 2.15(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 1.30(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.25\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz} ;$ CDCl_{3}) $200.3,196.6,178.9,168.4,129.8,61.7,58.6,45.1,23.7$, 17.4, 14.7 and 14.2; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 232.0\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 11600).

tert-Butyl 3-ethylthio-2-(ethylthiocarbonylmethyl)-5-oxocyclo-pent-3-enecarboxylate 7e

In the same manner as described for hydrolysis of compound $\mathbf{6 a}$ with aq. AcOH, the cyclopentadiene 6 e ($618 \mathrm{mg}, 1.6 \mathrm{mmol}$) was hydrolyzed to give the cyclopentenone $7 \mathrm{e}(446 \mathrm{mg}, 78 \%)$ as an oil (Found: M^{+}, 344.1112. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $M, 344.1115$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1728,1692$ and $1547 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.86$
$(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 3.77(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10,2-\mathrm{H}), 3.22(1 \mathrm{H}, \mathrm{d}$, J 3, 1-H), $3.09\left(1 \mathrm{H}, \mathrm{dd}, J 4\right.$ and 16, $\left.\mathrm{COCH}_{2}\right), 2.94(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.90\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.65(1 \mathrm{H}, \mathrm{dd}$, $J 10$ and 16, COCH_{2}), $1.49\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.39(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\mathrm{SCH}_{2} \mathrm{CH}_{3}$) and $1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 196.6, 196.2, 181.7, 167.5, 122.2, 82.1, 59.9, 46.9, 44.5, 28.0, 27.4, 23.6, 14.7 and 13.1; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 283.5\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 19000$) and 234.0 (8600).

Diethyl (2-ethylthiocarbonylmethylene)propanedioate 10b

A solution of S-ethyl (triphenylphosphoranylidene)ethanethionate ($3.1 \mathrm{~g}, 8.5 \mathrm{mmol}$) and diethyl oxomalonate ($1.4 \mathrm{~g}, 8.1$ $\mathrm{mmol})$ in chloroform $\left(50 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 48 h . The mixture was evaporated under reduced pressure. The residue was purified by flash chromatography [hexaneethyl acetate (5:1)] to give title compound $\mathbf{1 0 b}(1.78 \mathrm{~g}, 85 \%)$ as an oil (Found: H, 6.15; C, 50.67; S, 12.10. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~S}$ requires H, 6.20; C, 50.75 ; S, 12.32%); $v_{\max }$ (neat)/cm ${ }^{-1} 1736$ and 1672 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.01(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H=), 4.38(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.30\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.01(2 \mathrm{H}, \mathrm{q}, J 7.5$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.32(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.30\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 187.4, 164.4, 162.4, 134.3, 133.9, 62.5, 62.0, 24.1, 14.2, 13.9 and 13.8 .
$\mathbf{1}^{\prime}, \mathbf{1}^{\prime}$-Diethyl 5'-methyl 3-oxopent-1-ene-1,1,5-tricarboxylate 10c The starting phosphorane 9c was prepared in 83% overall yield by modification of the literature procedure via acylation ${ }^{9 a}$ of (tert-butoxycarbonylmethylene)triphenylphosphorane with 3-(methoxycarbonyl)propionyl chloride followed by decarboxylation. ${ }^{9 b}$ The phosphorane 9 c was purified by flash chromatography [ethyl acetate-methanol ($10: 1$)] to give an oil, which was used without further purification: $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.78-$ $7.40(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.72(1 \mathrm{H}, \mathrm{d}, J 26, \mathrm{CH}=\mathrm{P}), 3.66(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe})$ and $2.67\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

In the same manner as described for the preparation of compound 10b, phosphorane $9 \mathbf{c}(400 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with diethyl oxomalonate ($200 \mathrm{mg}, 1.1 \mathrm{mmol}$) to give title compound 10c ($288 \mathrm{mg}, 98 \%$) as an oil (Found: M^{+}, 276.1077. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7}$ requires $M, 276.0763$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1739,1707$ and $1632 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.17(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=), 4.36(2 \mathrm{H}, \mathrm{q}$, $\left.J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.31\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.69(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 2.95\left(2 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.66(2 \mathrm{H}, \mathrm{t}, J 6.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.33(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 196.7,172.7,164.7,162.8$, $135.8,135.0,62.5,62.0,51.9,38.1,27.4,13.8$ and 13.7.

(S)-Diethyl 4-acetoxy-3-oxopent-1-ene-1,1-dicarboxylate 10d

In the same manner as described for the preparation of compound 10b, phosphorane $9 \mathbf{d}^{9 b}(730 \mathrm{mg}, 1.9 \mathrm{mmol})$ was treated with diethyl oxomalonate ($326 \mathrm{mg}, 1.9 \mathrm{mmol}$) to give title compound $\mathbf{1 0 d}(530 \mathrm{mg}, 99 \%)$ as an oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 287.1135. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{7}$ requires $m / z, 277.1130$); [$\left.a\right]_{\mathrm{D}}^{25}-31.8(c \quad 0.24, \mathrm{MeOH})$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1742,1717$ and $1630 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.25$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H=), 5.25(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{COCH}), 4.36(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.31\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.15(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3} \mathrm{CH}\right), 1.34(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.33\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 195.6, 170.2, 164.5, 162.5, 138.0, 131.4, 74.3, 62.6, 62.1, 20.5, 15.6, 13.8 and 13.7.

Ethyl 5-[bis(ethoxycarbonyl)methyl]-2-ethoxy-4-methylcyclo-penta-1,3-dienecarboxylate 11a

In the same manner as described for the preparation of compound $\mathbf{6 a}$, phosphorane $\mathbf{1}(412 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with compound 10a ($235 \mathrm{mg}, 1.1 \mathrm{mmol}$) to give the cyclopentadiene 11a ($333 \mathrm{mg}, 94 \%$) as needles, $\mathrm{mp} 33.5-35.0^{\circ} \mathrm{C}$ (from hexanediethyl ether) (Found: H, 7.25; C, 60.73%; ${ }^{+}$, 354.1678. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{7}$ requires $\mathrm{H}, 7.39 ; \mathrm{C}, 61.00 \% ; M, 354.1677$); $v_{\text {max }}($ neat $) /$ $\mathrm{cm}^{-1} 1734,1701,1665,1624$ and $1559 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
$6.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 4.71(1 \mathrm{H}, \mathrm{d}, J 3.5,5-\mathrm{CH}), 4.30-4.14(6 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.10-4.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.92(1 \mathrm{H}, \mathrm{d}$, $J 3.5,5-\mathrm{H}), 2.09(3 \mathrm{H}, \mathrm{d}, J 1.5,4-\mathrm{Me}), 1.39(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$) and $1.17\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$; CDCl_{3}) 169.5, 169.0, 167.2, 163.5, 158.1, 121.9, 104.1, 66.9, $61.7,60.9,59.2,50.9,49.9,17.2,15.1,14.5,14.1$ and 14.0 ; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 308.0\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 7800\right)$.

Ethyl 5-[bis(ethoxycarbonyl)methyl]-2-ethoxy-4-ethylthiocyclo-penta-1,3-dienecarboxylate 11b

In the same manner as described for the preparation of compound 6a, phosphorane $\mathbf{1}(412 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with compound $\mathbf{1 0 b}(286 \mathrm{mg}, 1.1 \mathrm{mmol})$ to give the cyclopentadiene 11b ($348 \mathrm{mg}, 87 \%$) as needles, $\mathrm{mp} 78.5-80.0^{\circ} \mathrm{C}$ (from hexanediethyl ether) (Found: H, 6.92; C, 57.08; S, 7.76\%; M ${ }^{+}$, 400.1561. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{H}, 7.05 ; \mathrm{C}, 56.98 ; \mathrm{S}, 8.01 \% ; M$, 400.1554); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1736,1701,1659$ and $1597 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.09(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4,5-\mathrm{CH}), 4.32-$ $4.04\left(9 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.5-\mathrm{H}\right), 2.90(2 \mathrm{H}, \mathrm{q}, J 7.5$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.37(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\mathrm{SCH}_{2} \mathrm{CH}_{3}$), $1.32\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.29(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.18\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 168.9,168.7,166.5,163.0,158.4,116.5,103.5,67.0$, $61.6,60.8,59.1,52.0,49.9,27.1,15.0,14.5,14.0,14.0$ and 13.0; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 345.0\left(\varepsilon / \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 12700\right)$ and 233.5 (13 700).

Ethyl 5-[bis(ethoxycarbonyl)methyl]-2-ethoxy-4-[2-(methoxy-carbonyl)ethyl]cyclopenta-1,3-dienecarboxylate 11c
In the same manner as described for the preparation of compound 6a, phosphorane $\mathbf{1}(412 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with compound 10c ($315 \mathrm{mg}, 1.1 \mathrm{mmol}$) to give the cyclopentadiene 11c ($345 \mathrm{mg}, 81 \%$) as needles, $\mathrm{mp} 58.3-59.6^{\circ} \mathrm{C}$ (from diethyl ether-hexane) (Found: H, 7.15; C, 59.26. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{9}$ requires H , 7.09; C, $59.14 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1732,1663,1622$ and 1557 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; assignments were assisted by a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment) $6.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C} H=), 4.70(1 \mathrm{H}, \mathrm{d}, J 3.5$, $5-\mathrm{CH}), 4.36-4.00\left(8 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.31(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and $1,5-\mathrm{H}$), $3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.85-2.51\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $1.39\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.30$ ($3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}$) and $1.16\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}(75$ MHz; CDCl_{3}) 173.1, 169.5, 168.5, 167.2, 163.6, 160.1, 121.1, $104.7,66.9,61.8,60.9,59.2,51.6,51.0,48.8,32.7,25.9,14.9$, 14.4, 13.9 and 13.8; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 305.0\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ $8800)$ and 230.0 (5500).

Ethyl 2-[bis(ethoxycarbonyl)methyl]-3-methyl-5-oxocyclopent-3enecarboxylate 12a
In the same manner as described for hydrolysis of compound $\mathbf{6 a}$ with aq. HCl , the cyclopentadiene $11 \mathrm{a}(167 \mathrm{mg}, 0.47 \mathrm{mmol})$ was hydrolyzed to give the cyclopentenone $\mathbf{1 2 a}(138 \mathrm{mg}, 90 \%)$ as an oil (Found: $\mathrm{M}^{+}, 326.1342 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{7}$ requires $M, 326.1364$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1736,1709$ and $1626 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.96$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}$), $4.24\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.22(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.16\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.87(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $2-\mathrm{CH}), 3.71(1 \mathrm{H}, \mathrm{d}, J 2.5,1-\mathrm{H}), 2.18(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 1.32$ $\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and 1.22 $\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 200.2,176.7$, $168.6,167.6,166.9,130.7,62.1,62.0,61.8,56.2,51.4,47.3,17.5$, 14.2, 14.0 and 14.0.

Ethyl 2-[bis(ethoxycarbonyl)methyl]-3-ethylthio-5-oxocyclopent-3-enecarboxylate 12b
In the same manner as described for hydrolysis of compound 6a with aq. HCl , the cyclopentadiene $\mathbf{1 1 b}(200 \mathrm{mg}, 0.5 \mathrm{mmol})$ was hydrolyzed to give the cyclopentenone $\mathbf{1 2 b}(175 \mathrm{mg}, 94 \%)$ as an oil (Found: H, 6.62; C, 54.98; S, 8.53\%; M^{+}, 372.1214. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{H}, 6.50$; C, 54.82 ; $\mathrm{S}, 8.61 \% ; M, 372.1241$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1736,1699,1549$ and 1449; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$;
$\left.\mathrm{CDCl}_{3}\right) 5.91(1 \mathrm{H}, \mathrm{d}, J 1.5,4-\mathrm{H}), 4.24\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.21\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.17\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.04$ (1 H , ddd, $J 1.5,3$ and $4.5,2-\mathrm{H}$), $3.92(1 \mathrm{H}, \mathrm{d}, J 4.5,2-\mathrm{CH}), 3.84$ $(1 \mathrm{H}, \mathrm{d}, J 3,1-\mathrm{H}), 2.96\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.39(3 \mathrm{H}, \mathrm{t}$, $J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}$), $1.31\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.23\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 196.0, 179.2, 168.6, 167.4, 166.4, 123.0, 62.2, 61.8, 56.2, 52.4, 46.6, 27.5, 14.2, 14.0, 13.9 and 13.0.

Ethyl 2-[bis(ethoxycarbonyl)methyl]-3-[2-(methoxycarbonyl)-ethyl]-5-oxocyclopent-3-enecarboxylate 12c

In the same manner as described for hydrolysis of compound $\mathbf{6 a}$ with aq. HCl , the cyclopentadiene $11 \mathrm{c}(100 \mathrm{mg}, 0.23 \mathrm{mmol})$ was hydrolyzed to give the cyclopentenone $\mathbf{1 2 c}(89 \mathrm{mg}, 95 \%$) as an oil (Found: M^{+}, 398.1608. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{9}$ requires $M, 398.1575$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1738,1709$ and $1620 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; assignments were assisted by a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment) 5.94 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C} H=), 4.24\left(2 \mathrm{H}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.22(2 \mathrm{H}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.16\left(2 \mathrm{H}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.91(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}$ and $2-\mathrm{CH}), 3.73(1 \mathrm{H}, \mathrm{d}, 2.5,1-\mathrm{H}), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.88-2.61$ $\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27(3 \mathrm{H}$, $\left.\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.22\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $200.0,178.7,172.3,168.5,167.7,166.9,129.0$, $62.1,62.0,61.8,56.0,52.0,51.3,46.4,31.1,26.1,14.0,13.9$ and 13.8.

(E)-Ethyl 2-[bis(ethoxycarbonyl)methyl]-5-ethoxy-3-ethylidene-

 cyclopenta-1,4-dienecarboxylate 13In the same manner as described for the preparation of compound 6a, phosphorane $\mathbf{1}(412 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with compound 10 d ($303 \mathrm{mg}, 1.1 \mathrm{mmol}$) to give the fulvene 13 (329 $\mathrm{mg}, 90 \%$) as an oil (Found: $\mathrm{M}^{+}, 366.1706 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{7}$ requires M, 366.1677); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1732,1638$ and $1601 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; CDCl_{3}; assignments were assisted by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOESY experiments) $6.56(1 \mathrm{H}, \mathrm{qd}, J 7.5$ and $1, \mathrm{CH}=), 5.50$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}), 5.46(1 \mathrm{H}, \mathrm{d}, J 1,4-\mathrm{H}), 4.29(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.1-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.20\left(4 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.01(2 \mathrm{H}, \mathrm{q}$, $\left.J 7,5-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.09\left(3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{CH}_{3} \mathrm{CH}=\right), 1.42(3 \mathrm{H}, \mathrm{d}$, $\left.J 7,5-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7,1-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and 1.24 ($6 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 168.1, 163.9 , $160.3,140.8,136.5,134.8,128.7,89.6,65.6,61.7,60.5,49.5$, 16.6, 14.3, 14.0 and 13.9; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 375\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1} 600\right), 289(10400)$ and 233 (15 100).

(Z)-Ethyl 5-benzoylmethylene-2-ethoxy-4-phenylcyclopenta-1,3dienecarboxylate 15

In the same manner as described for the preparation compound 6a, phosphorane $\mathbf{1}(412 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with $1,4-$ diphenylbut-2-yne-1,4-dione 14 ($121 \mathrm{mg}, 1.1 \mathrm{mmol}$) to give title compound 15 ($344 \mathrm{mg}, 92 \%$) as purple prisms, $\mathrm{mp} 131.5-$ $133.0^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (Found: H, 5.98; C, 76.69. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{H}, 5.92$; C, 76.99%); $v_{\text {max }}$ (Nujol)/ $/ \mathrm{cm}^{-1} 1717$, 1667 and $1586 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; assignments were assisted by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOESY experiments) $7.94(2 \mathrm{H}$, br d, $J 8.5, \mathrm{COPh}), 7.54-7.41(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.76(1 \mathrm{H}, \mathrm{s},=\mathrm{CHCOPh})$, $6.56(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.37\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.81(2 \mathrm{H}, \mathrm{q}$, $\left.J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.47\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $0.92(3 \mathrm{H}, \mathrm{t}$, $\left.J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 194.0,171.3,163.1,147.7$, 142.7, 137.0, 133.5, 133.4, 133.1, 129.5, 129.0, 128.7, 128.6, $128.6,120.1,98.9,67.5,59.2,15.3$ and $13.9 ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm}$ $458.0\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 2200\right)$, 424.5 (2200), 290.5 (13 500) and 241.0 (19 100).

(E)-Ethyl 2-benzoylmethylene-5-oxo-3-phenylcyclopent-3-enecarboxylate 16

In the same manner as described for hydrolysis of compound $\mathbf{6 a}$ with aq. HCl , the cyclopentadiene $15(215 \mathrm{mg}, 0.57 \mathrm{mmol})$ was hydrolyzed to give the cyclopentenone $\mathbf{1 6}(192 \mathrm{mg}, 97 \%)$ as purple needles, $\mathrm{mp} 120.9-121.7^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: H, 5.20; C, 76.09. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{H}, 5.24$; C ,
$76.29 \%) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1736,1705,1659$ and $1603 ; \delta_{\mathrm{H}}(300$ MHz ; CDCl_{3}; assignments were assisted by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOESY experiments) 7.87 ($2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8.5, \mathrm{COPh}$), 7.60-7.42 $(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.27(1 \mathrm{H}$, dd, $J 0.5$ and $1.5,=\mathrm{CHCOPh}), 6.60$ $(1 \mathrm{H}, \mathrm{d}, J 0.5,4-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{d}, J 1.5,1-\mathrm{H}), 4.28(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.33\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 197.9, 189.8, 171.4, 165.8, 150.2, 137.9, 135.0, 133.3, 132.1, 130.7, 129.1, 128.7, 128.3, 128.2, 119.8, 61.9, 57.2 and 14.2; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 302.0\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 27300\right)$.

Methyl (5-tert-butoxycarbonyl-2-ethylthio-4-oxocyclopent-2enyl)acetate 17
Aq. $\mathrm{NaOH}\left(0.01 \mathrm{~m} ; 24 \mathrm{~cm}^{3}, 2.4 \mathrm{mmol}\right)$ was added to an icecooled solution of thioester $7 \mathrm{e}(800 \mathrm{mg}, 2.3 \mathrm{mmol})$ in MeOH $\left(160 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. It was then neutralized with 1 m aq. HCl , and concentrated under reduced pressure. The remaining solution was extracted with diethyl ether and the extract was washed with water, dried and evaporated. The residue was purified by flash chromatography [hexane-ethyl acetate (5:1)] to give title compound $\mathbf{1 7}$ (538 mg , 74%) as needles, $\mathrm{mp} 54.5-55.2^{\circ} \mathrm{C}$ (from diethyl etherpetroleum spirit) (Found: H, 6.99; C, 57.46; S, 9.97. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{H}, 7.05 ; \mathrm{C}, 57.30 ; \mathrm{S}, 10.20 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1736$, 1699 and $1549 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.86(1 \mathrm{H}, \mathrm{d}, J 1.5,3-\mathrm{H})$, 3.73-3.69 (1 H, br s, 1-H), $\left.3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH})_{3}\right), 3.20(1 \mathrm{H}, \mathrm{d}, J 3$, $5-\mathrm{H}), 2.94\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.89(1 \mathrm{H}, \mathrm{dd}, J 16.5$ and 4 , $\left.\mathrm{COCH}_{2}\right), 2.44\left(1 \mathrm{H}, \mathrm{dd}, J 16.5\right.$ and $\left.10, \mathrm{COCH}_{2}\right), 1.49(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t}\right)$ and $1.39\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $196.7,181.6,171.1,167.7,122.2,82.1,60.3,52.0,44.2,37.8$, 28.0, 27.4 and 13.1.

Methyl [5-tert-butoxycarbonyl-2-ethylthio-4-oxo-5-(pent-2-ynyl)-cyclopent-2-enyl]acetate 18
A solution of sodium bis(trimethylsilyl)amide (NaHDMS) (1 m in THF; $2.6 \mathrm{~cm}^{3}$) was added to a solution of the cyclopentenone $17(670 \mathrm{mg}, 2.13 \mathrm{mmol})$ in THF ($40 \mathrm{~cm}^{3}$) at $-30^{\circ} \mathrm{C}$ under nitrogen and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. A solution of 1-bromopent-2-yne ($410 \mathrm{mg}, 2.79 \mathrm{mmol}$) in THF $\left(1 \mathrm{~cm}^{3}\right)$ was added and the mixture was stirred for 3 h at room temperature and then for 12 h at $60^{\circ} \mathrm{C}$. The cooled reaction mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The extract was dried and evaporated. The residue was purified by flash chromatography [hexane-ethyl acetate ($5: 1$)] to give title compound $\mathbf{1 8}(766 \mathrm{mg}, 94 \%)$ as needles, $\mathrm{mp} 76.1-$ $77.3^{\circ} \mathrm{C}$ (from hexane) (Found: H, 7.36; C, 62.94; S, 8.33 . $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}$ requires $\left.\mathrm{H}, 7.42 ; \mathrm{C}, 63.13 ; \mathrm{S}, 8.43 \%\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1732,1694 and $1551 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.98(1 \mathrm{H}, \mathrm{d}, J 1.5$, $3-\mathrm{H}), 3.87(1 \mathrm{H}$, ddd, $J 1.5,6$ and $9,1-\mathrm{H}), 3.71$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $2.96\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.90-2.70(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{and}$ $\left.5-\mathrm{CH}_{2}\right), 2.07\left(2 \mathrm{H}, \mathrm{tq}, J 2.5\right.$ and $\left.7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.42(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$ and $1.03(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 199.9,181.3,171.7,168.2,122.9$, 84.0, 82.7, 74.1, 62.6, 52.0, 47.4, 34.7, 27.8, 27.3, 23.6, 14.1, 13.1 and 12.4.

Methyl [2-ethylthio-4-oxo-5-(pent-2-enyl)cyclopent-2-enyl]acetate 19

A solution of compound $\mathbf{1 8}(433 \mathrm{mg}, 1.14 \mathrm{mmol})$, anisole (0.4 cm^{3}) and TFA ($4 \mathrm{~cm}^{3}$) in benzene ($20 \mathrm{~cm}^{3}$) was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at $40^{\circ} \mathrm{C}$. After the starting material had disappeared completely (TLC, ca. 3 h), the reaction mixture was evaporated under reduced pressure at $60^{\circ} \mathrm{C}$. The residue was purified by flash chromatography [hexane-ethyl acetate (3:1)] to give methyl [2-ethylthio-4-oxo-5-(pent-2-ynyl)cyclopent-2enyl]acetate ($286 \mathrm{mg}, 90 \%$) as an oil (Found: M^{+}, 280.1128. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 280.1132$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1738,1692$ and $1545 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.93(1 \mathrm{H}$, br s, $3-\mathrm{H}), 3.71(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.35-3.29(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.93(2 \mathrm{H}, \mathrm{q}, J 7.5$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.86\left(1 \mathrm{H}, \mathrm{dd}, J 5\right.$ and 16.5 , one of $\left.\mathrm{COCH}_{2}\right), 2.67-$ $2.35\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 5-\mathrm{CH}_{2}\right.$ and one of $\left.\mathrm{COCH}_{2}\right), 2.10(2 \mathrm{H}, \mathrm{tq}$,
$J 7.5$ and $\left.2.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$ and 1.06 $\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 203.7, 181.2, $171.5,123.3,83.5,75.2,51.8,51.3,45.5,38.0,27.0,20.2,14.1$, 13.1 and 12.3 .

The oil ($140 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}\left(5 \mathrm{~cm}^{3}\right)$ and the solution was stirred with $\mathrm{Pd} / \mathrm{C}(10 \%, 200 \mathrm{mg})$ under hydrogen (1 atm) for 2 h at room temperature. After filtration, the filtrate was evaporated under reduced pressure. The residue was purified by flash chromatography [hexane-ethyl acetate (3:1)] to give title compound $19(141 \mathrm{mg}, 100 \%)$ as an oil (Found: H, 8.05; C, 63.72; S, $11.30 \% ; \mathrm{M}^{+}, 282.1283 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{H}, 7.85 ; \mathrm{C}, 63.80 ; \mathrm{S}, 11.35 \% ; M, 282.1288) ; v_{\text {max }}($ neat $) /$ $\mathrm{cm}^{-1} 1738,1692$ and $1547 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ assignments were assisted by a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment) $5.90(1 \mathrm{H}$, br s, $3-\mathrm{H}), 5.64-5.38\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.34-5.18(1 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC} H_{3}\right), 3.12-3.01(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $2.92\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.78(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and 16 , one of $\left.\mathrm{COCH}_{2}\right), 2.56-2.30\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 5-\mathrm{CH}_{2}\right.$ and one of $\left.\mathrm{COCH}_{2}\right), 2.14-1.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$ and $0.96\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 205.0, 180.9, 171.6, 134.6, 124.2, 123.4, 52.6, 51.9, 45.6, 38.8, 28.4, 27.1, 20.6, 14.2 and 13.1.
(\pm)-Methyl [4-oxo-5-(pent-2-enyl)cyclopent-2-enyl]acetate [(\pm)methyl dehydrojasmonate] 20
Sodium borohydride $(0.24 \mathrm{~g}, 6.3 \mathrm{mmol})$ was slowly added to a stirred solution of nickel chloride hexahydrate $(0.71 \mathrm{~g}, 3.0$ mmol) in EtOH $\left(100 \mathrm{~cm}^{3}\right)$ and water $\left(3 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ over a period of 15 min , and the mixture was stirred for 10 min at room temperature. To the resulting black suspension was added a solution of compound 19 ($72 \mathrm{mg}, 0.26 \mathrm{mg}$) in EtOH ($2 \mathrm{~cm}^{3}$) and the mixture was stirred at room temperature for 2 h and then heated under reflux for 24 h . The cooled reaction mixture was filtered through Celite and the filtrate was evaporated under reduced pressure. After the residue had been shaken with brine and chloroform, the chloroform layer was dried and evaporated. The residue was purified by flash chromatography [hexane-ethyl acetate ($3: 1$)] to give starting material 19 (23 mg , 32% recovery) and title compound $20(27 \mathrm{mg}, 47 \%)$ which showed spectral data consistent with those reported ${ }^{9}$ for (\pm)-methyl dehydrojasmonate, $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; assignments were assisted by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment) $7.63(1 \mathrm{H}$, dd, $J 2.5$ and $5.5,2-\mathrm{H}), 6.18(1 \mathrm{H}$, dd, $J 2$ and $5.5,3-\mathrm{H}), 5.62-5.40$ $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.36-5.20\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)$, $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.10-2.98(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.64-2.20(5 \mathrm{H}, \mathrm{m}$, $1-\mathrm{CH}_{2}, 5-\mathrm{H}$ and $\left.5-\mathrm{CH}_{2}\right), 2.11-1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and 0.96 $\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 210.2,171.8$, $165.3,134.5,133.8,124.4,51.8,51.0,43.2,38.2,27.7,20.6$ and 14.2.

Acknowledgements

We are grateful to the Material Analytical Research Center of National Institute of Materials and Chemical Research, for NMR spectra, HRMS spectra and microanalyses.

References

1 (a) M. Hatanaka, Y. Himeda and I. Ueda, J. Chem. Soc., Perkin Trans. 1, 1993, 2269; (b) M. Hatanaka, Y. Himeda, R. Imashiro, Y. Tanaka and I. Ueda, J. Org. Chem., 1994, 59, 111.

2 (a) G. Büchi and H. Wüest, Helv. Chim. Acta, 1971, 54, 1767; (b) F. Bohlmann and C. Zdero, Chem. Ber., 1973, 106, 3779; (c) W. G. Dauben and J. Ipaktschi, J. Am. Chem. Soc., 1973, 95, 5088; (d) W. G. Dauben, D. J. Hart, J. Ipaktschi and A. P. Kozikowski, Tetrahedron Lett., 1973, 4425; (e) A. Padwa and L. Brodsky, J. Org. Chem., 1974, 39, 1318; (f) E. Vedejs and J. P. Bershas, Tetrahedron Lett., 1975, 1359; (g) S. F. Martin and S. R. Desai, J. Org. Chem., 1977, 42, 1664; (h) M. Hatanaka, Y. Yamamoto and T. Ishimaru, J. Chem. Soc., Chem. Comтип., 1984, 1705.
3 For other annulations of allylidene(triphenyl)phosphorane see: (a) L. Capuano and A. Willmes, Liebigs Ann. Chem., 1982, 80; (b) L. Capuano, T. Triesch and A. Willmes, Chem. Ber., 1983, 116, 3767; (c) L. Capuano, T. Triesch, V. Schramm and W. Heller, Chem. Ber., 1984, 117, 2785; (d) J. Ipaktschi and A. Saadatmandi, Liebigs Ann. Chem., 1984, 1989; (e) M. Hatanaka, Y. Yamamoto, T. Ishimaru and T. Takai, Chem. Lett., 1985, 183.

4 A. W. Johnson, Ylides and Imines of Phosphorus, Wiley, New York, 1993, pp. 198-201.
5 Y. Himeda, Y. Yamataka, I. Ueda and M. Hatanaka, J. Org. Chem., 1997, 62, 6529.
6 For excellent reviews, see: M. Ramaiah, Synthesis, 1984, 529; L. A. Paquette, Top. Curr. Chem., 1984, 119, 1; R. D. Little, Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 5, p. 239; N. E. Schore, Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 5, p. 1037; K. L. Habermas and S. E. Denmark, Org. React., 1994, 45, 1.
7 Preliminary report: (a) M. Hatanaka, Y. Himeda, Y. Tanaka and I. Ueda, Tetrahedron Lett., 1995, 36, 3211; (b) Y. Himeda, I. Ueda and M. Hatanaka, Chem. Lett., 1996, 71.
8 For isolation, see: R. Kaiser and D. Lamparsky, Tetrahedron Lett., 1974, 3413. For synthesis, see: P. Ducos and F. Rouessac, Tetrahedron, 1973, 29, 3233; S. Torii, H. Tanaka and Y. Kobayashi, J. Org. Chem., 1977, 42, 3473.
9 (a) H. H. Wasserman and G.-H. Kuo, Tetrahedron, 1992, 48, 7071; (b) T. Hiyama, K. Kabayashi and M. Fujita, Tetrahedron Lett., 1984, 25, 4959.

Paper 7/09296B
Received 24th December 1997
Accepted 11th February 1998

[^0]: \dagger Present address: Catalysis Research Centre, Hokkaido University, Sapporo 060, Japan.

